Laminar Flow and Turbulent Flow

If you have been around smokers, you probably noticed that the cigarette smoke rises in a smooth plume for the first few centimeters and then starts fluctuating randomly in all directions as it continues its journey toward the lungs of others (Fig. 1). Likewise, a careful inspection of flow in a pipe reveals that the fluid flow is streamlined at low velocities but turns chaotic as the velocity is increased above a critical value. The flow regime in the first case is said to be laminar flow, characterized by smooth streamlines and highly-ordered motion, and turbulent flow in the second case, where it is characterized by velocity fluctuations and highly-disordered motion. The transition from laminar to turbulent flow does not occur suddenly; rather, it occurs over some region in which the flow fluctuates between laminar and turbulent flows before it becomes fully turbulent.

Fig. 1

We can verify the existence of these laminar, transition, and turbulent flow regimes by injecting some dye streak into the flow in a glass tube, as the British scientist Osborn Reynolds (1842–1912) did over a century ago. We will observe that the dye streak will form a straight and smooth line at low velocities when the flow is laminar (we may see some blurring because of molecular diffusion), will have bursts of fluctuations in the transition regime, and will zigzag rapidly and randomly when the flow becomes fully turbulent. These zigzags and the dispersion of the dye are indicative of the fluctuations in the main flow and the rapid mixing of fluid particles from adjacent layers.

Fig. 2

Typical velocity profiles in laminar and turbulent flow are also given in Figure 2. Note that the velocity profile is approximately parabolic in laminar flow and becomes flatter in turbulent flow, with a sharp drop near the surface. The turbulent boundary layer can be considered to consist of three layers. The very thin layer next to the wall where the viscous effects are dominant is the laminar sublayer. The velocity profile in this layer is nearly linear, and the flow is streamlined. Next to the laminar sublayer is the buffer layer, in which the turbulent effects are significant but not dominant of the diffusion effects, and next to it is the turbulent layer, in which the turbulent effects dominate.

The intense mixing of the fluid in turbulent flow as a result of rapid fluctuations enhances heat and momentum transfer between fluid particles, which increases the friction force on the surface and the convection heat transfer rate. It also causes the boundary layer to enlarge. Both the friction and heat transfer coefficients reach maximum values when the flow becomes fully turbulent. So it will come as no surprise that a special effort is made in the design of heat transfer coefficients associated with turbulent flow. The enhancement in heat transfer in turbulent flow does not come for free, however. It may be necessary to use a larger pump to overcome the larger friction forces accompanying the higher heat transfer rate.

Enjoyed reading, also read Reynolds number

1 thought on “Laminar Flow and Turbulent Flow

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.